Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__0) -> 01
FIRST12(s1(X), cons2(Y, Z)) -> FIRST12(X, activate1(Z))
ACTIVATE1(n__s1(X)) -> S1(X)
UNQUOTE1(01) -> 01
QUOTE1(n__sel2(X, Z)) -> SEL12(activate1(X), activate1(Z))
QUOTE11(n__cons2(X, Z)) -> QUOTE11(activate1(Z))
ACTIVATE1(n__nil) -> NIL
ACTIVATE1(n__from1(X)) -> FROM1(X)
SEL12(0, cons2(X, Z)) -> QUOTE1(X)
QUOTE11(n__first2(X, Z)) -> FIRST12(activate1(X), activate1(Z))
QUOTE1(n__sel2(X, Z)) -> ACTIVATE1(X)
FIRST2(0, Z) -> NIL
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
UNQUOTE11(nil1) -> NIL
QUOTE11(n__first2(X, Z)) -> ACTIVATE1(X)
QUOTE11(n__cons2(X, Z)) -> ACTIVATE1(Z)
FCONS2(X, Z) -> CONS2(X, Z)
QUOTE11(n__cons2(X, Z)) -> QUOTE1(activate1(X))
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FROM1(X) -> CONS2(X, n__from1(s1(X)))
UNQUOTE11(cons12(X, Z)) -> UNQUOTE11(Z)
QUOTE1(n__sel2(X, Z)) -> ACTIVATE1(Z)
UNQUOTE11(cons12(X, Z)) -> FCONS2(unquote1(X), unquote11(Z))
QUOTE11(n__cons2(X, Z)) -> ACTIVATE1(X)
FROM1(X) -> S1(X)
UNQUOTE1(s11(X)) -> S1(unquote1(X))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
UNQUOTE1(s11(X)) -> UNQUOTE1(X)
FIRST12(s1(X), cons2(Y, Z)) -> QUOTE1(Y)
SEL12(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FIRST12(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL12(s1(X), cons2(Y, Z)) -> SEL12(X, activate1(Z))
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
QUOTE1(n__s1(X)) -> QUOTE1(activate1(X))
QUOTE1(n__s1(X)) -> ACTIVATE1(X)
QUOTE11(n__first2(X, Z)) -> ACTIVATE1(Z)
UNQUOTE11(cons12(X, Z)) -> UNQUOTE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> CONS2(Y, n__first2(X, activate1(Z)))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__0) -> 01
FIRST12(s1(X), cons2(Y, Z)) -> FIRST12(X, activate1(Z))
ACTIVATE1(n__s1(X)) -> S1(X)
UNQUOTE1(01) -> 01
QUOTE1(n__sel2(X, Z)) -> SEL12(activate1(X), activate1(Z))
QUOTE11(n__cons2(X, Z)) -> QUOTE11(activate1(Z))
ACTIVATE1(n__nil) -> NIL
ACTIVATE1(n__from1(X)) -> FROM1(X)
SEL12(0, cons2(X, Z)) -> QUOTE1(X)
QUOTE11(n__first2(X, Z)) -> FIRST12(activate1(X), activate1(Z))
QUOTE1(n__sel2(X, Z)) -> ACTIVATE1(X)
FIRST2(0, Z) -> NIL
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
UNQUOTE11(nil1) -> NIL
QUOTE11(n__first2(X, Z)) -> ACTIVATE1(X)
QUOTE11(n__cons2(X, Z)) -> ACTIVATE1(Z)
FCONS2(X, Z) -> CONS2(X, Z)
QUOTE11(n__cons2(X, Z)) -> QUOTE1(activate1(X))
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FROM1(X) -> CONS2(X, n__from1(s1(X)))
UNQUOTE11(cons12(X, Z)) -> UNQUOTE11(Z)
QUOTE1(n__sel2(X, Z)) -> ACTIVATE1(Z)
UNQUOTE11(cons12(X, Z)) -> FCONS2(unquote1(X), unquote11(Z))
QUOTE11(n__cons2(X, Z)) -> ACTIVATE1(X)
FROM1(X) -> S1(X)
UNQUOTE1(s11(X)) -> S1(unquote1(X))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
UNQUOTE1(s11(X)) -> UNQUOTE1(X)
FIRST12(s1(X), cons2(Y, Z)) -> QUOTE1(Y)
SEL12(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FIRST12(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL12(s1(X), cons2(Y, Z)) -> SEL12(X, activate1(Z))
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
QUOTE1(n__s1(X)) -> QUOTE1(activate1(X))
QUOTE1(n__s1(X)) -> ACTIVATE1(X)
QUOTE11(n__first2(X, Z)) -> ACTIVATE1(Z)
UNQUOTE11(cons12(X, Z)) -> UNQUOTE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> CONS2(Y, n__first2(X, activate1(Z)))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 6 SCCs with 27 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE1(s11(X)) -> UNQUOTE1(X)

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


UNQUOTE1(s11(X)) -> UNQUOTE1(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(UNQUOTE1(x1)) = x1   
POL(s11(x1)) = 1 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

UNQUOTE11(cons12(X, Z)) -> UNQUOTE11(Z)

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


UNQUOTE11(cons12(X, Z)) -> UNQUOTE11(Z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(UNQUOTE11(x1)) = x1   
POL(cons12(x1, x2)) = 1 + x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
The remaining pairs can at least be oriented weakly.

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(ACTIVATE1(x1)) = x1   
POL(FIRST2(x1, x2)) = 1 + x2   
POL(SEL2(x1, x2)) = x2   
POL(activate1(x1)) = x1   
POL(cons2(x1, x2)) = x1 + x2   
POL(first2(x1, x2)) = 1 + x2   
POL(from1(x1)) = x1   
POL(n__0) = 0   
POL(n__cons2(x1, x2)) = x1 + x2   
POL(n__first2(x1, x2)) = 1 + x2   
POL(n__from1(x1)) = x1   
POL(n__nil) = 0   
POL(n__s1(x1)) = 0   
POL(n__sel2(x1, x2)) = x2   
POL(nil) = 0   
POL(s1(x1)) = 0   
POL(sel2(x1, x2)) = x2   

The following usable rules [14] were oriented:

0 -> n__0
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X
first2(0, Z) -> nil
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__s1(X)) -> s1(X)
first2(X1, X2) -> n__first2(X1, X2)
cons2(X1, X2) -> n__cons2(X1, X2)
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
activate1(n__0) -> 0
activate1(n__nil) -> nil
s1(X) -> n__s1(X)
from1(X) -> cons2(X, n__from1(s1(X)))
nil -> n__nil
activate1(n__from1(X)) -> from1(X)
from1(X) -> n__from1(X)
sel2(0, cons2(X, Z)) -> X
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
QDP
                    ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVATE1(n__sel2(X1, X2)) -> SEL2(X1, X2)
The remaining pairs can at least be oriented weakly.

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(ACTIVATE1(x1)) = x1   
POL(SEL2(x1, x2)) = x2   
POL(activate1(x1)) = x1   
POL(cons2(x1, x2)) = x1 + x2   
POL(first2(x1, x2)) = x2   
POL(from1(x1)) = x1   
POL(n__0) = 0   
POL(n__cons2(x1, x2)) = x1 + x2   
POL(n__first2(x1, x2)) = x2   
POL(n__from1(x1)) = x1   
POL(n__nil) = 0   
POL(n__s1(x1)) = 0   
POL(n__sel2(x1, x2)) = 1 + x2   
POL(nil) = 0   
POL(s1(x1)) = 0   
POL(sel2(x1, x2)) = 1 + x2   

The following usable rules [14] were oriented:

0 -> n__0
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(X) -> X
first2(0, Z) -> nil
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__s1(X)) -> s1(X)
first2(X1, X2) -> n__first2(X1, X2)
cons2(X1, X2) -> n__cons2(X1, X2)
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
activate1(n__0) -> 0
activate1(n__nil) -> nil
s1(X) -> n__s1(X)
from1(X) -> cons2(X, n__from1(s1(X)))
nil -> n__nil
activate1(n__from1(X)) -> from1(X)
from1(X) -> n__from1(X)
sel2(0, cons2(X, Z)) -> X
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(SEL2(x1, x2)) = x1   
POL(activate1(x1)) = 0   
POL(cons2(x1, x2)) = 0   
POL(first2(x1, x2)) = 0   
POL(from1(x1)) = 0   
POL(n__0) = 0   
POL(n__cons2(x1, x2)) = 0   
POL(n__first2(x1, x2)) = 0   
POL(n__from1(x1)) = 0   
POL(n__nil) = 0   
POL(n__s1(x1)) = 0   
POL(n__sel2(x1, x2)) = 0   
POL(nil) = 0   
POL(s1(x1)) = 1 + x1   
POL(sel2(x1, x2)) = 0   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SEL12(s1(X), cons2(Y, Z)) -> SEL12(X, activate1(Z))
QUOTE1(n__sel2(X, Z)) -> SEL12(activate1(X), activate1(Z))
QUOTE1(n__s1(X)) -> QUOTE1(activate1(X))
SEL12(0, cons2(X, Z)) -> QUOTE1(X)

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FIRST12(s1(X), cons2(Y, Z)) -> FIRST12(X, activate1(Z))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FIRST12(s1(X), cons2(Y, Z)) -> FIRST12(X, activate1(Z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(FIRST12(x1, x2)) = x1   
POL(activate1(x1)) = 0   
POL(cons2(x1, x2)) = 0   
POL(first2(x1, x2)) = 0   
POL(from1(x1)) = 0   
POL(n__0) = 0   
POL(n__cons2(x1, x2)) = 0   
POL(n__first2(x1, x2)) = 0   
POL(n__from1(x1)) = 0   
POL(n__nil) = 0   
POL(n__s1(x1)) = 0   
POL(n__sel2(x1, x2)) = 0   
POL(nil) = 0   
POL(s1(x1)) = 1 + x1   
POL(sel2(x1, x2)) = 0   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

QUOTE11(n__cons2(X, Z)) -> QUOTE11(activate1(Z))

The TRS R consists of the following rules:

sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
sel2(0, cons2(X, Z)) -> X
first2(0, Z) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(s1(X)))
sel12(s1(X), cons2(Y, Z)) -> sel12(X, activate1(Z))
sel12(0, cons2(X, Z)) -> quote1(X)
first12(0, Z) -> nil1
first12(s1(X), cons2(Y, Z)) -> cons12(quote1(Y), first12(X, activate1(Z)))
quote1(n__0) -> 01
quote11(n__cons2(X, Z)) -> cons12(quote1(activate1(X)), quote11(activate1(Z)))
quote11(n__nil) -> nil1
quote1(n__s1(X)) -> s11(quote1(activate1(X)))
quote1(n__sel2(X, Z)) -> sel12(activate1(X), activate1(Z))
quote11(n__first2(X, Z)) -> first12(activate1(X), activate1(Z))
unquote1(01) -> 0
unquote1(s11(X)) -> s1(unquote1(X))
unquote11(nil1) -> nil
unquote11(cons12(X, Z)) -> fcons2(unquote1(X), unquote11(Z))
fcons2(X, Z) -> cons2(X, Z)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
0 -> n__0
cons2(X1, X2) -> n__cons2(X1, X2)
nil -> n__nil
s1(X) -> n__s1(X)
sel2(X1, X2) -> n__sel2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__0) -> 0
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__nil) -> nil
activate1(n__s1(X)) -> s1(X)
activate1(n__sel2(X1, X2)) -> sel2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.